The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS)

CIPARS 2024 Key and Integrated Findings

World Antimicrobial Resistance Awareness Week November 18th, 2025 Presented by Carolee Carson, BSc, DVM, PhD

While we meet on a virtual platform, we acknowledge the Indigenous Peoples, who traditionally resided on all the lands that we are on today.

From coast to coast, to coast, we acknowledge the ancestral territories of all the First Nations, Inuit, and Métis peoples across the country.

We do this as a reminder as public servants of our commitments and responsibility in addressing the lasting impacts of colonization in Indigenous communities, especially the public health inequities experienced by Indigenous Populations.

I ask that you take a moment to reflect on the traditional territory where you reside.

Presentation link

- https://cahss.ca/cahss-tools/document-library
- Canadian Animal Health Surveillance System (CAHSS) has developed several documents on antimicrobial use reporting that can be found at: https://cahss.ca/cahss-networks/amuamr

Survey/Poll

- Link is in the chat
- Responses are anonymous
- Your feedback guides our products

Other housekeeping

- Please remain muted until the Q&As segment
- Al-based transcription or recording is not permitted

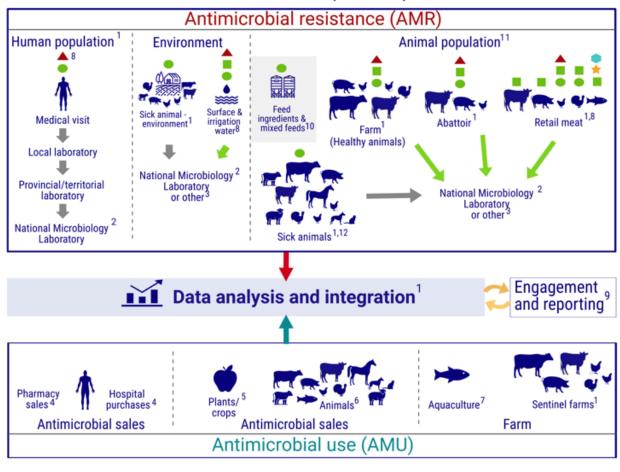
Agenda

Key and integrated findings

- Sales data
- AMU/AMR
- Emerging stories
- Interactive data
- Summary
- Questions and answers

Host-specific sessions

- Humans
- Poultry
- Feedlot cattle
- Dairy cattle
- Grower-finisher pigs


CIPARS is led by the Public Health Agency of Canada in conjunction with multiple federal departments and relevant parties.

5-year trends are now 2020-2024 (noting COVID years).

Data sources are noted on each slide. If no source is shown, the data come from CIPARS.

CIPARS timeline: https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-integrated-program-antimicrobial-resistance-surveillance-over-years-2002-2021.html

Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS)

- 1 Centre for Foodborne and Environmental and Zoonotic Infectious Diseases (CFEZID), Infectious Diseases and Vaccination Programs Branch (IDVPB), Public Health Agency of Canada (PHAC)
- 2 Bacterial Pathogens, AMR and Wastewater Division and Division of Enteric Diseases, National Microbiology Laboratory Branch, PHAC
- 3 Provincial animal health laboratory, university laboratory or private laboratory
- 4 Canadian Antimicrobial Resistance Surveillance System (CARSS), PHAC. Data source: IQVIA
- 5 Pest Management Regulatory Agency, Health Canada
- 6 Veterinary Antimicrobial Sales Reporting (VASR), Veterinary Drugs Directorate, Health Canada and CFEZID, PHAC
- 7 Fisheries and Oceans Canada
- 8 FoodNet Canada, CFEZID, IDVPB, PHAC
- 9 CIPARS engagement and reporting including: Annual Stakeholder Webinars, Integrated Findings Reports, Data Visualizations, Farm Surveillance Technical Reports (including health and biosecurity data), Fact sheets, Infographics, Journal publications, VASR Highlights Reports, and CARSS Reports
- 10 Canadian Food Inspection Agency (CFIA)
- 11 Laboratory analysis reporting of Clostridium perfrigens, Enterococcus spp., and bovine respiratory pathogens occurs for select years and species
- 12 AMRNet-Vet shares data for bovine respiratory disease bacterial pathogens

- → Active surveillance
 → Passive surveillance
- AMR data
- AMU data
- Communication
 Campylobacter
- Escherichia coli
- Salmonella
- Aeromonas
- * Vibrio

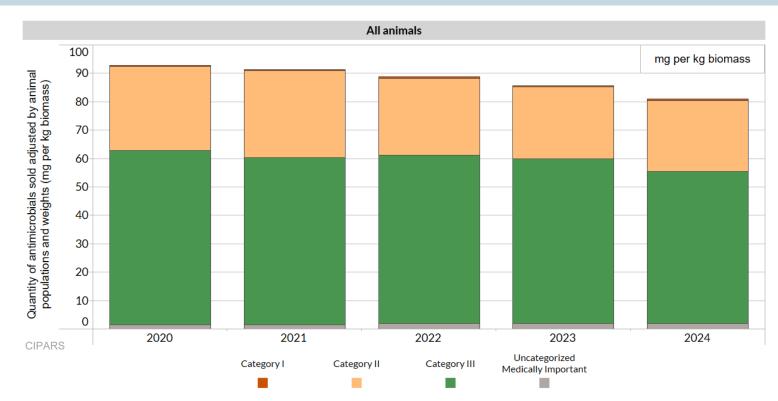

Integrated antimicrobial sales

Veterinary Antimicrobial Sales Reporting (VASR)

Primary outcome indicators:

- Total quantities of Medically Important Antimicrobials^a (MIAs) sold (kg and kg adjusted by biomass denominators)
- Quantities of Category Ib antimicrobials sold (kg and kg adjusted by biomass denominators)
- VASR data includes medically important antimicrobials only; antifungals not included.

ahttps://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/veterinary- antimicrobial-sales-reporting/list-a.html bhttps://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/categorizationantimicrobial-drugs-based-importance-human-medicine.html

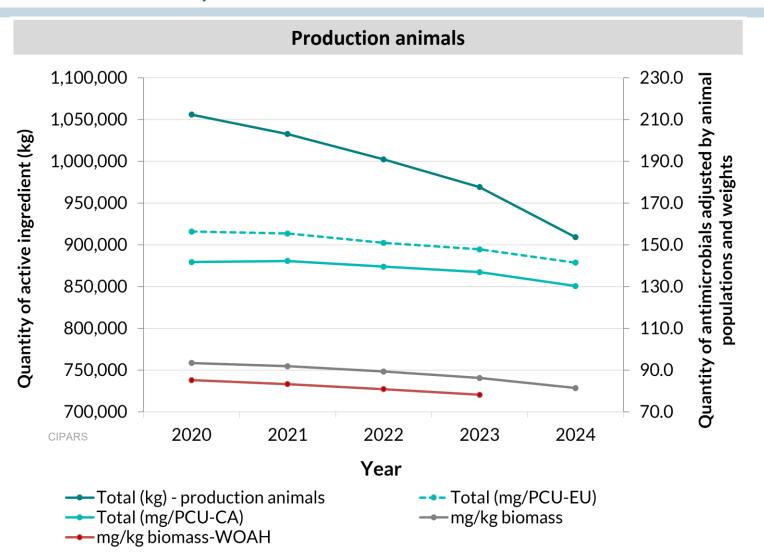


Since 2020, the overall relative quantity of MIA sales for <u>all animals</u> decreased by 13% (measured in mg/kg biomass). However, Category I sales increased substantially by 23% (mg/kg biomass).

- 5% relative decrease in the total quantity of MIA sold between 2023 and 2024 (mg/kg biomass); 13% overall between 2020 and 2024
- Substantial relative decrease of ~26% in the total quantity of MIA sold between 2015 and 2024^a (mg/PCU-CA)^b
- Category I sales are < 1% of total sales (consistent with previous years) however, Category I sales adjusted by biomass had a substantial overall relative increase of 23% between 2020 and 2024

Category I trend magnified, 2020-2024

aln 2018, data from both the Canadian Animal Health Institute (CAHI) and VASR were available and used to <u>estimate</u> the percentage coverage increase with the VASR data. This percentage was retrospectively applied to the reported CAHI to generate a more comparable sales estimate (assuming the coverage difference was the same each year).


^bThe kg-biomass denominator is not available prior to 2018.

Total sales of MIAs for <u>production animals</u> decreased by 10-14% in 2024, relative to 2020 (across metrics).

Relative to 2020, the quantity of MIAs sold for use in production animals decreased in 2024 by:

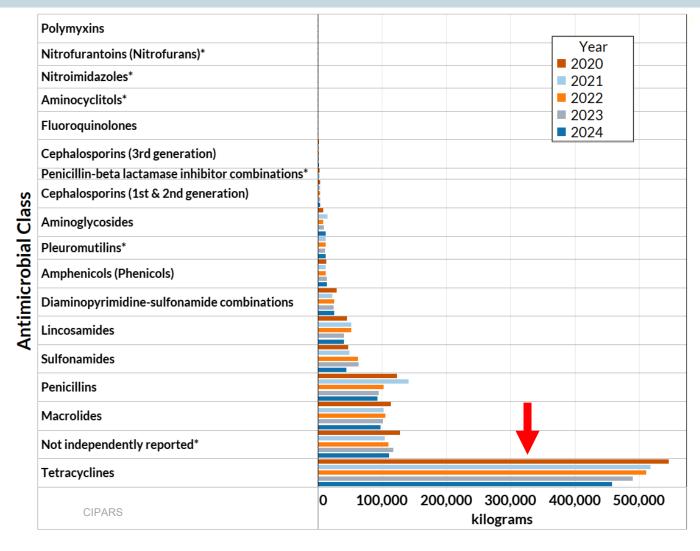
- 14% in kg
- 13% in mg/kg biomass
- 10% in mg/PCU-CA
- 10% in mg/PCU-EU

While tetracyclines highly predominate the sales each year, they have decreased by 16% relative to 2020.

All animals

Indicator: kilograms

In 2024, around 97% of tetracyclines sold were for use in pigs, beef cattle, and aquaculture

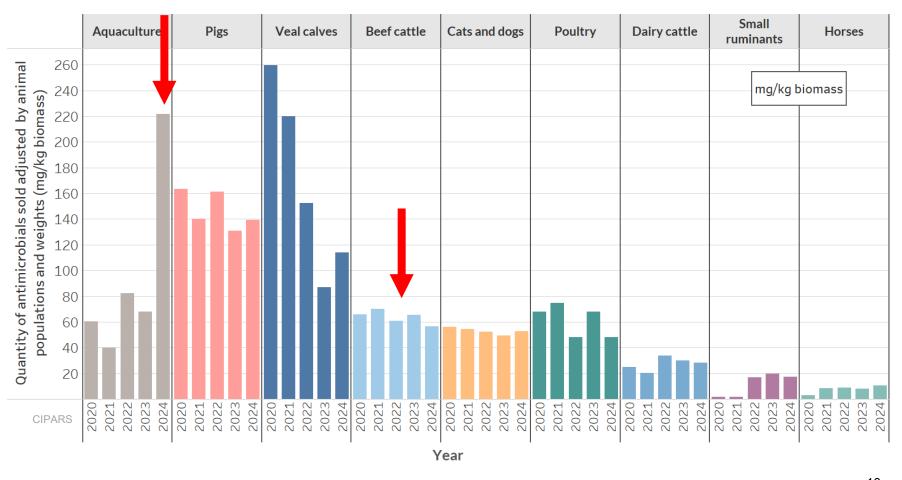

• Pigs: ~ 55%

• Beef cattle: ~ 38%

Aquaculture: ~ 4%

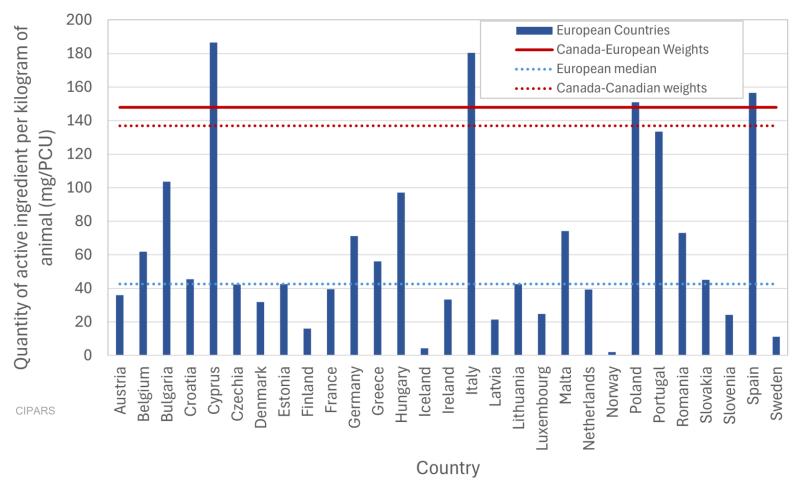
Classes included in all years - aminocoumarins, bacitracins, carbapenems, diaminopyrimidines, fusidic acid, glycopeptides, orthosomycins, pseudomonic acids, streptogramins, and therapeutic agents for tuberculosis.

Between 2018-2020 – pleuromutilins and nitroimidazoles included
Between 2022-2024 – penicillin-beta lactamase inhibitor combinations included
In 2024 – aminocyclitols and nitrofurantoins included



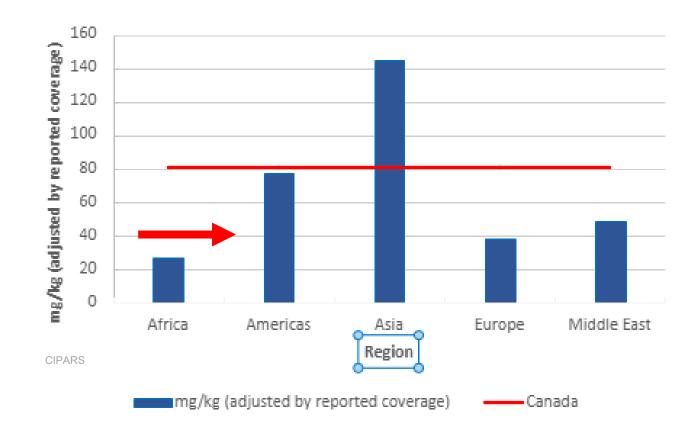
^{*}Antimicrobial classes with fewer than three companies reporting are grouped together as Not Independently Reported (NIR) to prevent identification of individual company's sales volumes. Classes included in NIR vary by year.

For aquaculture, the total MIAs sold substantially increased in 2024, which is unusual, relative to previous years. For beef cattle, the total MIAs sold relatively decreased, though there was a 72% relative increase in Category I antimicrobials sold compared to 2020.


- Aquaculture now has the highest quantity of MIAs sold adjusted for biomass compared to other animal species – the increase in 2024 relative to 2020 was 226%
- Beef cattle substantial relative increase (72%) in Category I antimicrobials sold between 2020 and 2024 (data not shown)
 - Represents less than 1% of their total sales (absolute difference of ~760 kg)
- Other animal species no notable trend in Category I quantities sold

Canada is 5th highest when comparing antimicrobials sold for use in production animals to data from 29 European countries (2023 data).

	Canada	Europear	n median			
mg/PCU- CA	136.9 NA					
mg/PCU- EU	147.8	42.5	(2022: 45.8)			
	3.5	X				



In 2022, Canada's sales (mg/kg-WOAH) were higher than the average for the Americas (ANIMUSE).

Canada: 80.9 mg/kg-WOAH

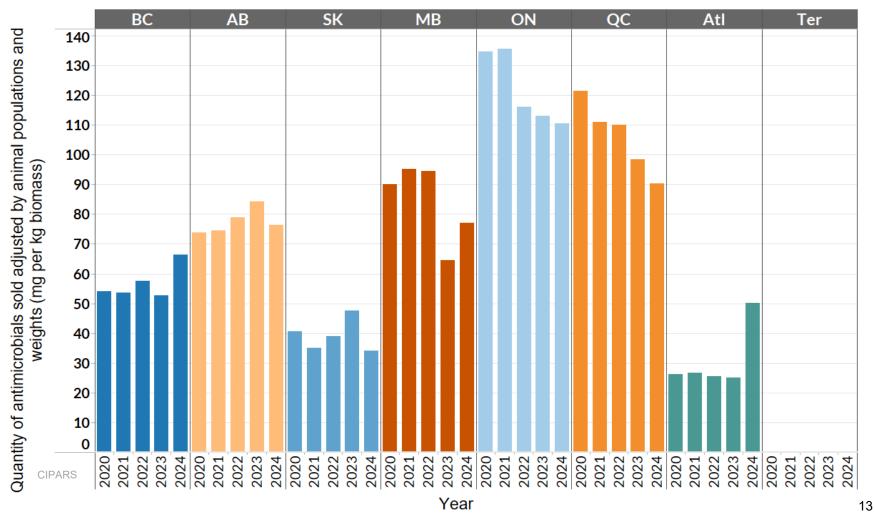
Americas^a: 77.8 mg/kg-WOAH

Proportionally, Canada sells **more** tetracyclines, macrolides, sulfonamides and lincosamides, and **less** fluoroquinolones than the Americas overall.

112

^aCanada and 16 other countries including the US

Source: WOAH-ANIMUSE Interactive Report - https://amu.woah.org/amu-system-portal/home

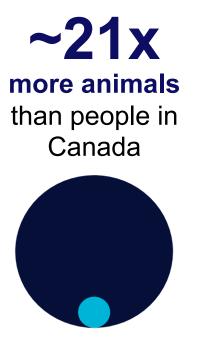


There are differences in trends in quantities of MIAs sold across the provinces.

All animals

Indicator: mg/kg biomass

- Continued relative decreases in sales of MIAs for ON (24%) and QC (31%) between 2020 and 2024
- Relative increases between 2023 and 2024 in:
 - BC 14%
 - MB 12%
 - Atlantic provinces 25% (Coastal changes related to sales in aquaculture)
- In 2024, sales of MIAs by compounders (data not shown) remain highest in Quebec (50% of total compounder sales) and Ontario (31% of total compounder sales)



The ratio of MIAs sold for animals compared to humans dropped in 2024 to ~1.3x; there were decreases in sales for humans.

Indicator: kg (unadjusted)

76% Production animals
<1% Cats and dogs
23% Humans
<1% Plants/crops

Indicator: mg/pop-adj biomass
(humans); mg/PCU-CA (animals)

 $\sim 1.3x$

more medically important antimicrobials were sold for use in animals (all) than for use in all people after adjusting for underlying biomass

CIPARS

For humans and animals, only systemic routes are included (oral and parenteral). Antifungal information not included on this slide.

Indicators used: Humans – kilograms (unadjusted) & mg/population adjusted biomass; Animals – kilograms (unadjusted) & mg/PCU-CA; Crops – kilograms (unadjusted)

Data sources: Human hospital purchases and community pharmacy dispensations: SHAMU (IQVIA); Crops: Health Canada's Pest Management Regulatory

Agency (HC-PMRA); Human population: Statistics Canada

Animals (96%)Humans (4%)

There are very different relative uses of antimicrobial classes between animals and humans. Substantially more Category I antimicrobials were sold for use in humans than in animals, adjusted for biomass.

In 2024:

- 11x more 3rd generation cephalosporins sold for use in humans than animals
- 25x more fluoroquinolones sold for use in humans than animals
- 22x more tetracyclines sold for use in animals than humans

Indicators: mg/PCU-CA (animal); mg/population adjusted biomass (human)

Ť	Hum	nan		 	Antimicrobial Class	 	AII A	nim	als	
2020	2021	2022	2023	2024		2020	2021	2022	2023	2024
2.29	2.13	2.30	2.25	2.36	3rd & 4th generations cephalosporins	0.18	0.18	0.19	0.20	0.21
0.46	0.46	0.46	0.46	0.48	carbapenemsa				0.00	
4.63	4.22	4.35	4.13	3.97	fluoroquinolones	0.05	0.08	0.13	0.14	0.16
17.26	15.14	17.85	20.11	22.19	penicillin beta-lactamase inhibitor combin	0.38	0.42	0.43	0.42	0.43

mg adjusted for biomass

0.00 25.00

CIPARS

^aNote the quantity of carbapenems sold for use in animals in 2023 were <0.01 mg/kg biomass. Prior to 2023 there were no reported sales of carbapenems for use in animals. **Data sources:** SHAMU (IQVIA) and CIPARS; data include antimicrobials for systemic use only; see appendix for more details

The quantity of antifungals sold as pesticides on plants/crops in 2023 was greater than the total quantity of medically important antibiotics sold for humans, animals, and plants/crops combined.

Plants/crops

- Total quantity sold in 2024: 2,209,507 kgs
- These are all triazoles (biologically active compounds with antifungal properties)
- Have many uses, including as antifungals and retardants on plants and crops
- None of the antifungal active ingredients sold for use on plants/crops are approved for veterinary or human use (although there are other triazoles approved for use in animals and people)
- Like antimicrobials, resistance can develop and is a concern

Antifungal active ingredient						
difenoconazole						
flutriafol						
ipconazole						
mefentrifluconazole						
metconazole						
myclobutanil						
paclobutrazol						
propiconazole						
prothioconazole						
tebuconazole						
tetraconazole						
triticonazole						
uniconazole-p						

CIPARS

Data on antifungals intended for use in humans and animals are not currently available.

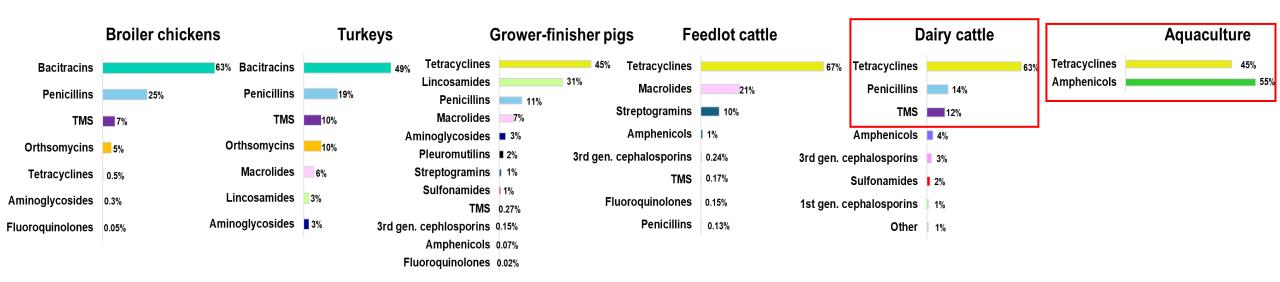
Data on antifungal sales for plants/crops provided by Health Canada's Pest Management Regulatory Agency.

Integration of sales and farm AMU data

Veterinary Antimicrobial Sales Reporting (VASR), sentinel terrestrial farms, all aquaculture operations

Primary outcome indicators:

- Relative percentages of antimicrobial classes used or sold per animal group
- Total quantities of MIAs used or sold (kg and kg adjusted by biomass denominators) for aquaculture



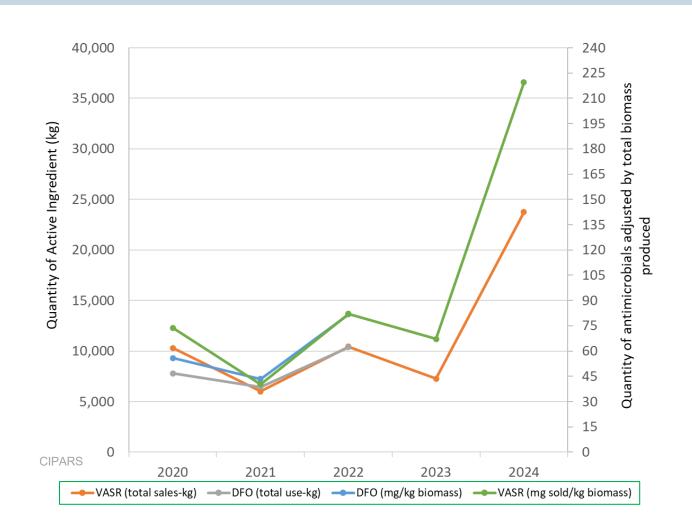
There are differences in the relative uses of various antimicrobial classes across animal species. VASR data and farm data are similar for species where comparisons are appropriate.

Farm AMU

Indicator: % of use (in kg)

CIPARS

Red squares indicate the top classes reported sold for use in that host species/group by VASR (where host species/group are comparable) Terrestrial farm data are from CIPARS sentinel farms.


Aquaculture data is from Fisheries and Oceans data and represents all aquaculture operations in Canada. Latest data available for aquaculture are from 2022.

The quantity of antimicrobials sold and used nationally in aquaculture are highly similar. There is a recent substantial increase in AMU/sales for aquaculture

Aquaculture Indicators kg, mg/kg biomass

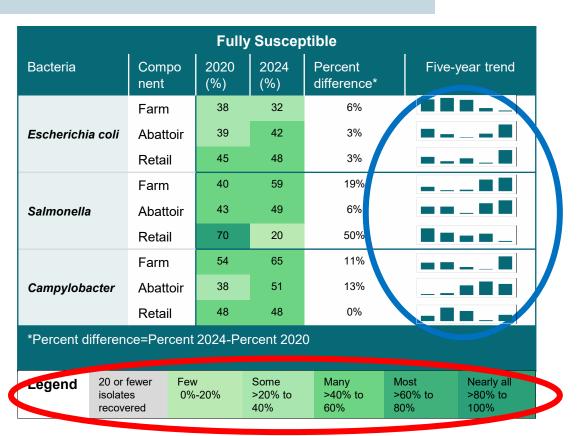
- Only datasets where we have complete data for both farm (Fisheries and Oceans Canada) and sales (VASR)
- The two data sets follow <u>highly</u> similar trends
- A downward trend was noted between 2018 and 2021, followed by a sharp increase, particularly between 2023 and 2024

Note: Antimicrobial totals do not include antiparasitic drugs for either dataset

AMR and integrated AMU/AMR

CIPARS – data from sentinel farms, abattoir, and retail meat

Primary outcome indicators:


- AMU: total AMU, Category I, II and III AMU measured in nDDDvetCA/1000 animal-days at risk
- AMR: % of isolates fully susceptible (in appendix), % not susceptible to ciprofloxacin for *E. coli* and *Salmonella*,
 % resistant to ciprofloxacin for *Campylobacter*, % resistant to ceftriaxone, % multidrug-resistant (resistant to 3 or more classes)
 - o 14 antimicrobials in 11 antimicrobial classes for *E. coli* and *Salmonella*
 - o 9 antimicrobials in 7 classes for *Campylobacter*

NOTE: both "not susceptible to ciprofloxacin" and "resistant to ciprofloxacin" are referred to as "resistant to ciprofloxacin" for the remainder of the presentation

Orientation to new tables

Species/group XXX

Species/group YYY

Ciprofloxacin resistance							
Bacteria	Compon ent	2020 (%)	2024* (%)		Percent difference*		ear trend
	Farm	9	6	3	3%		_ ■ _
Escherichia coli	Abattoir	10	19	9	9%		_=
	Retail	12	7	5	5%		
	Farm	4	5	1	%	_	
Salmonella	Abattoir	5	17	1:	12%		
	Retail	2	33	3	1%		
	Farm	30	15	1	5%		
Campylobacter	Abattoir	21	29	8	3%		
	Retail	28	29		1		_=-
*Percent difference=Percent 2024-Percent 2020							
gend 20 or fewer isolates recovered	Rare 0- 0.1%	Very low 0.1% to 1%	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%

Note: colour schemes and legends

"significant": *p*-value ≤ 0.05; "substantial": ≥ 20% absolute difference

All bacterial species from chicken abattoir samples had an increasing trend in ciprofloxacin resistance. At retail, one third of *Salmonella* and *Campylobacter* were ciprofloxacin-resistant.

Broiler chickens/chicken

E. coli

· Abattoir: significant increase to moderate

Salmonella

- Abattoir: significant increased to moderate
- Retail: significant and substantial increase to high

<u>Campylobacter</u>

- Farm: percent of resistant isolates decreased from high to moderate in 2024
- Abattoir and retail: remained high

		Ciproflo	oxacin res	sistance	
Bacteria	Component	2020 (%)	2024 (%)	Percent differenceª	Five-year trend (vertical 0% to 33%)
	Farm	9	6	3%	
Escherichia co	Abattoir	10	19	9%	
	Retail	12	7	5%	
	Farm	4	5	1%	
Salmonella	Abattoir	5	17	12%	
	Retail	2	33	31%	==
	Farm	30	15	15%	
Campylobacte	Abattoir	21	29	8%	
	Retail	28	29	1%	
^a Percent difference:	=Percent 2024-Per	cent 2020			
Legend 20 or fewer iso recovered	plates Rare Very low 0.1% to 10	Low >1% to 10%	Moderate >10% to 20%	High	Extremely high >70% CIPARS

Note: Partial farm sampling in one province impacted the national-level estimates

There was a significant increase in ceftriaxone resistance in retail chicken *Salmonella* isolates. Ceftriaxone resistance in other broiler chicken components remained low.

Broiler chickens/chicken

E. coli

All components: resistance was low

Salmonella

- Farm and abattoir: resistance remained low
- Retail: increase in resistance from low to moderate

	Ceftriaxone resistance							
Bacteria		Component	2020 (%)	2024 (%)	Percent o	difference ^a		-year trend al 0% to 16%)
		Farm	4	6	2	2%		
Escher	ichia coli	Abattoir	3	2	,	1%		
		Retail	3	3	(0%		
		Farm	4	5	,	1%		
Salmon	nella	Abattoir	4	9	Ę	5%		
		Retail	3	16	1	3%		
^a Percent o	difference=Pe	rcent 2024-Per	cent 2020					
Legend	20 or fewer isolates recovered	Rare Very low 0.1% to 19	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%	CIPARS

Note: Partial farm sampling in one province impacted the national-level estimates

For MDR in *Salmonella*, there was a significant increase to moderate and high at abattoir and retail, respectively.

Broiler chickens/chicken

E. coli

Farm and abattoir: MDR remained high

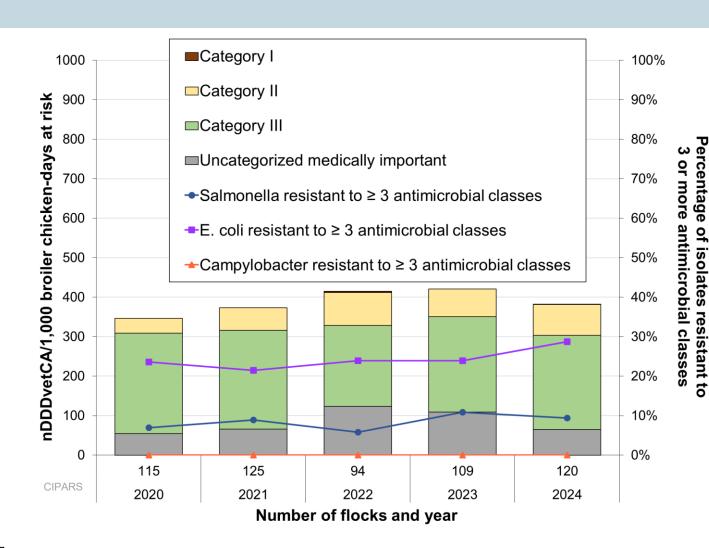
Salmonella

- Farm: MDR remained low
- Abattoir: MDR increased significantly to moderate
- Retail: MDR significantly and substantially increased from low to high

Campylobacter

 All components: MDR ranged from rare to low

Multidrug resistance (MDR)							
Bacteria	Component	2020 (%)	2024(%)	Percent d	ifferenceª	Five-year trend (vertical 0% to 29%	%)
	Farm	24	29	5'	%		
Escherichia col	j Abattoir	21	24	3'	%		
	Retail	22	16	6%			
	Farm	7	9	2%			
Salmonella	Abattoir	7	17	10%			
	Retail	3	25	22	2%		
	Farm	0	0	No ch	nange		
Campylobacter	Abattoir	0	1	1'	%		
	Retail	0.8	0	1%			
^a Percent difference=I	Percent 2024-Per	cent 2020					
Legend 20 or fewer isolat recovered	es Rare Very low 0.1% to 1	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%	IPARS


Note: Partial farm sampling in one province impacted the national-level estimates

On broiler chicken farms, AMU decreased (since 2022) with shifts in the categories of MIA. The frequency of MDR in *E. coli* significantly increased (since 2021).

Broiler chickens on farm

	Reported AMU: nDDDvetCA/1000 broiler chicken-days at risk							
	2020 2024 Percent change							
Т	otal	346	382	10% increase				
	Category I	0	0.36	100% increase				
	Category II	37	79	110% increase				
	Category III	255	238	6% decrease				
	Uncategorized	54	65	19% increase				

For healthy turkeys on farm and retail turkey, one third of *Campylobacter* isolates were resistant to ciprofloxacin. Ciprofloxacin resistance ranged from rare to low for *E. coli* and *Salmonella*.

Turkeys/turkey

E. coli and Salmonella

Farm and retail: resistance ranged between rare to low

Campylobacter

 Farm and retail: resistance was high (>30%)

	Ciprofloxacin resistance							
Bacteria		Component	2020 (%)	2024 (%)	Percent difference ^a	Five-year trend (vertical 0% to 38%)		
		Farm	5	6	1%			
Escher	ichia coli	Retail	3	1	2%	_ =		
		Farm	2	0.6	>1%			
Salmon	iella	Retail	0	0	0%			
0		Farm	18	31	13%			
Campy	lobacter	Retail	38	31	7%			
^a Percent c	difference=Pe	rcent 2024-Per	cent 2020					
Legend	20 or fewer isolates recovered	Rare Very low 0-0.1% to 19	Low >1% to 10%	Moderate >10% to 20%	High	Extremely high >70% CIPARS		

Ceftriaxone resistance in bacteria from turkey(s) ranged from rare to low across components and years.

Turkeys/turkey

E. coli

- Farm: resistance was observed in 2019 (1%)
- Retail: resistance remained low

Salmonella

 Farm and retail: resistance ranged from rare to low

	Ceftriaxone resistance							
Bacteria		Component	2020 (%)	2020 (%) 2024 (%) Percent difference		difference ^a	Five-year trend (vertical 0% to 10%)	
	. , . , , .	Farm	0	0		0%		
Escher	ichia coli	Retail	6	2		4%	=	
		Farm	0	2		2%		
Salmor	nella	Retail	2	0	2%		-	
^a Percent o	^a Percent difference=Percent 2024-Percent 2020							
Legend	20 or fewer isolates recovered	Rare Very low 0.1% to 1	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	>70% CIPARS	S

For *E. coli* from turkey farms, MDR significantly decreased from high to moderate between 2020 and 2024, though it ranged from rare to low for *Salmonella* and *Campylobacter* isolates.

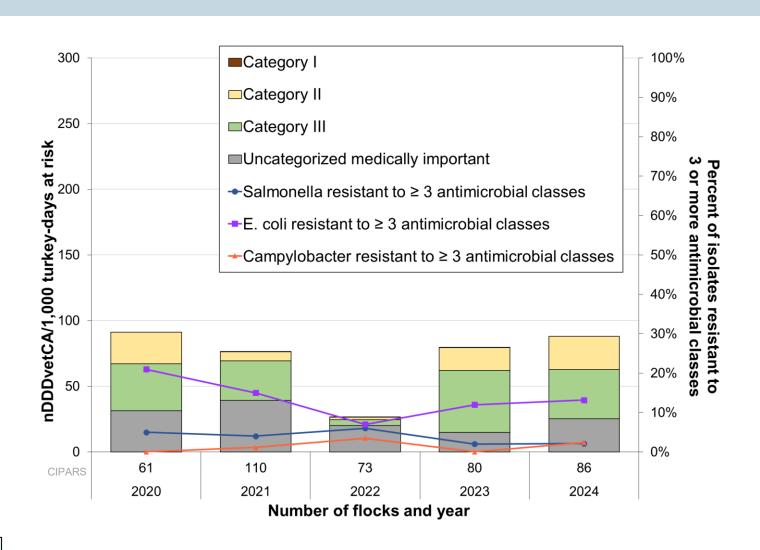
Turkeys/turkey

E. coli

 Farm: MDR significantly decreased from high to moderate

Salmonella and Campylobacter

Farm and retail: MDR ranged from rare to low


	Multidrug resistance (MDR)							
Bacteria	Component	2020 (%)	2024 (%)	Percent o	difference ^a	Five-year trend (vertical 0% to 25%)		
	Farm	22	13	(9%			
Escherichia coli	Retail	13	7	(6%			
2	Farm	5	2	3%				
Salmonella	Retail	4	0	4	1%	_ ■ _		
Campylobacter	Farm	0	2	2	2%			
	Retail	0	6	6%				
^a Percent difference=Pe	rcent 2024-Per	cent 2020						
Legend 20 or fewer isolates recovered	Rare Very low 0.1% to 1%	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70% CIPARS		

For turkeys, reported AMU has been increasing since 2022. In 2024, there was no reported Category I use, whereas Category II and III use increased. MDR in *E. coli* significantly decreased between 2020 and 2024.

Turkeys on farm

Reported AMU: nDDDvetCA/1000 turkey-days at risk						
	2020	2024	Percent change ^a			
Total	91	88	4% decrease			
Category I	0	0	No change			
Category II	24	25	4% increase			
Category III	36	37	5% increase			
Uncategorized	31	25	19% decrease			

For layer chickens in 2024, while the frequency of resistance to ciprofloxacin in *Salmonella* and *E. coli* was ≤2%, it was 21% for *Campylobacter*.

Layer chickens on farm

E. coli

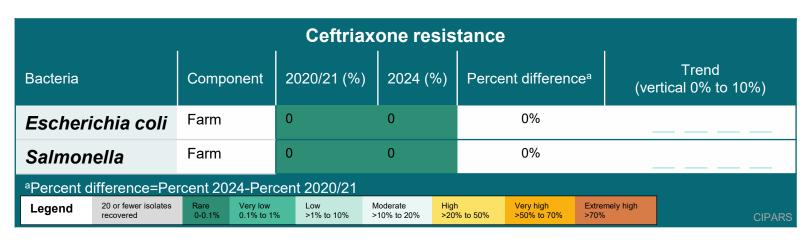
Resistance remained low

Salmonella

Resistance not observed

<u>Campylobacter</u>

Resistance was high (at 21%)


	Ciprofloxacin resistance											
Bacteria		Component	2020/21 (%) 2024 (%)		Percent difference ^a		ce ^a (ve	Trend ertical 0% to 30%)				
Escherichia coli		Farm	2	2	0%							
Salmonella		Farm	0	0	0%		-					
Campylobacter		Farm	16	21	21 5%		1					
^a Percent	^a Percent difference=Percent 2024-Percent 2020/21											
Legend 20 or fewer isolates recovered		Rare Very low 0-0.1% to 19					Extremely high >70%	CIPARS				

For layer chickens, ceftriaxone resistance was not observed in *E. coli* or *Salmonella*.

Layer chickens on farm

 Not observed – for E. coli or Salmonella

For layer chickens, MDR was low in *E. coli* and not observed in *Salmonella or Campylobacter*.

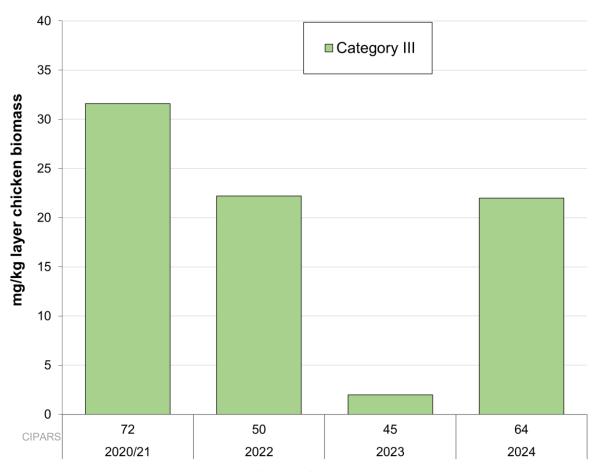
Layer chickens on farm

E. coli

MDR was very low (1%)

Salmonella and Campylobacter

Not observed


	Multidrug resistance (MDR)											
Bacteria		Component	2020/21 (%	2024 (%)	Percent differer		Trend ertical 0% to 10%)					
Escherichia coli		Farm	3	1	2%							
Salmonella		Farm	0 0		0%							
Campylobacter		Farm	0	0	0%							
^a Percent	^a Percent difference=Percent 2024-Percent 2020/21											
Legend	20 or fewer isolates recovered	Rare Very low 0.1% to 1%	Low >1% to 10%	Moderate Hig >10% to 20% >20	Very high >50% to 70%	Extremely high >70%	CIPARS					

For MIAs, only Category III antimicrobials were reported for layer chicken flocks. Multidrug resistance was only detected in *E. coli* (≤3% over time).

Layer chickens on farm

Reported AMU: mg/kg layer chicken biomass										
	2020/21 2024 Percent change ^a									
T	otal	32	22	30% decrease						
	Category I, II and uncategorized	Not reported	Not reported							
	Category III	32	22	30% decrease						

Number of layer flocks and year

For pigs, ciprofloxacin resistance significantly increased in all bacterial species from abattoir between 2020 and 2024. On farm, ciprofloxacin resistance significantly increased in *Campylobacter*.

Grower-finisher pigs/pork

E. coli

• Abattoir: significant increase

Salmonella

• Abattoir: significant increase

<u>Campylobacter</u>

- Farm: significant increase
- Abattoir: significant increase from low to moderate

Ciprofloxacin resistance										
Bacteria	Component		2020 (%)	2024 (%)	Percent difference ^a			ear trend 0% to 20%)		
		Farm	1	5	4%					
Escheric	hia coli	Abattoir	0	4	4	1%				
		Retail	0	4	4	1%				
		Farm	1	3	2%					
Salmonel	lla	Abattoir	0	5	5%					
		Retail	0	0	(0%				
0	h 4	Farm	12	17	5%					
Campylobacter		Abattoir	10	19	(9%				
^a Percent diffe	erence=Pei	rcent 2024-Per	cent 2020							
Leuellu	or fewer isolates covered	Rare Very low 0.1% to 19	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%	CIPARS		

For pigs at abattoir, ceftriaxone resistance in Salmonella isolates significantly increased.

Grower-finisher pigs/pork

E. coli

All components: resistance was rare to low

<u>Salmonella</u>

Abattoir: significant increase

Retail: 4/8 isolates were resistant

Ceftriaxone resistance											
Bacteria		Component		020 (%)	2024 (%)	Percent	Percent difference ^a		year trend al 0% to 10%)		
		Farm	1		1		0%				
Escherich	nia coli	Abattoir	3		1		2%				
		Retail	0		2		2%				
		Farm	1		8		7%				
Salmonell	la	Abattoir	1		10		9%	_			
		Retail	0		50	50%					
^a Percent diffe	erence=Pe	rcent 2024-Pe	rcent	t 2020							
Leuellu	or fewer isolates overed	Rare Very lot 0.1% to		Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%	CIPARS		

For pigs/pork, MDR frequencies were moderate to high. The frequency of MDR in *Campylobacter* on farm significantly decreased.

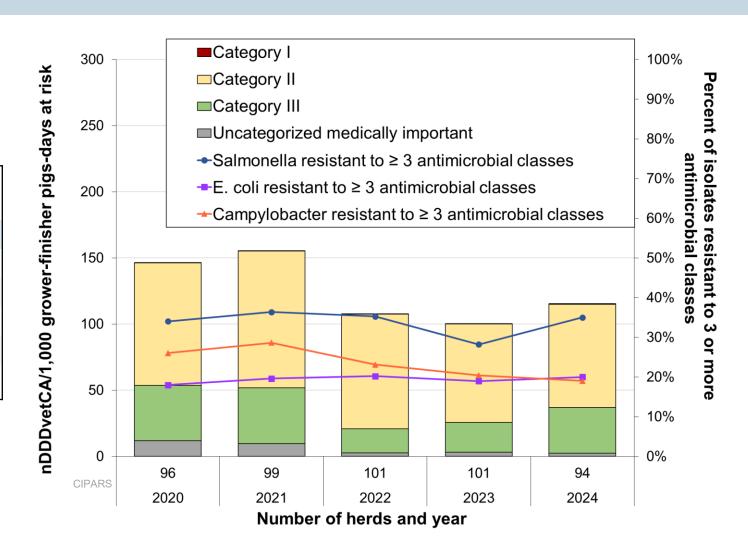
Grower-finisher pigs/pork

Salmonella

- Farm and abattoir: MDR was high
- Retail: MDR was observed in 4/8 isolates

<u>Campylobacter</u>

Farm: MDR significantly decreased from high to moderate


Multidrug resistance (MDR)											
Bacteria	Component	2020 (%)	2024 (%)	Percent difference ^a		Five-year t (vertical 0% to					
	Farm	18	20	2	2%						
Escherichia co	Abattoir	24	19	Ę	5%						
	Retail	12	21	ć	9%						
	Farm	34	35	1%							
Salmonella	Abattoir	22	21	1%							
	Retail	0	50	50%							
	Farm	26	19	7%							
Campylobacte	Abattoir	22	28	6%							
^a Percent difference	=Percent 2024-Pe	cent 2020									
Legend 20 or fewer is recovered	olates Rare Very low 0.1% to 1	Low >1% to 10%	Moderate >10% to 20%	High >20% to 50%	Very high >50% to 70%	Extremely high >70%	CIPARS				

For grower-finisher pigs, there was a substantial relative increase in Category I use between 2020 and 2024 (though Cat I represent < 1% total reported AMU). MDR frequencies were moderate to high.

Grower-finisher pigs on farm

	Reported AMU: nDDDvetCA/1000 grower-finisher pig-days at risk									
		2020	2024	Percent change ^a						
Т	otal	146	115	21% decrease						
	Category I	0.09	0.41	380% increase						
	Category II	93	78	16% decrease						
	Category III	42	35	17% decrease						
	Uncategorized	12	2	81% decrease						

For feedlot cattle and cattle at abattoir, the frequency of *Campylobacter* resistant to ciprofloxacin was high or very high with significant and substantial increases.

Feedlot cattle/abattoir cattle/beef

E. coli

All components: resistance was rare to low

Salmonella

Farm: 10 isolates

<u>Campylobacter</u>

 For farm and abattoir: frequency of ciprofloxacin resistance was high or very high with significant and substantial increases

	Ciprofloxacin resistance										
Bacteria	Component	2020 (%)	2024 (%)	Percent difference ^a	Five-year trend (vertical 0% to 59%)						
	Farm	1	1	0%	<u> </u>						
Escherichia co	i Abattoir	3	0	3%							
	Retail	3	3	<1%							
	Farm	0	0	0%							
Salmonella	Retail		100	Not tested	Not tested						
	Farm	29	59	30%							
Campylobacter	Abattoir	18	41	23%							
^a Percent difference=	Percent 2024-Per	cent 2020									
Legend 20 or fewer isolates recovered	Rare Very low 0.1% to 1%		derate High >20% to 50%	Very high Extremely high >50% to 70% >70%	CIPARS						

For feedlot cattle, cattle at abattoir, and ground beef, ceftriaxone resistance in *E. coli* isolates ranged from rare to low.

Feedlot cattle/abattoir cattle/beef

E. coli

Resistance was rare to low

Salmonella

• Farm: 10 isolates

	Ceftriaxone resistance										
Bacteria		Component	2020 (%)	2024 (%)	Percent differenceª		Five-year trend (vertical 0% to 38%)				
			0	0		0%					
Esche	richia coli	Abattoir	0	0	0%						
		Retail	0	2	1%						
		Farm	0	0		0%					
Salmo	nella	Retail		100	Not tested		Not tested				
^a Percen	^a Percent difference=Percent 2024-Percent 2020										
Legend	20 or fewer isolates recovered		Low Mode >1% to 10% >10%	rate High >20% to 50%	Very high >50% to 70%	Extremely high >70%	CIPARS				

Multidrug resistance in *E. coli* significantly increased in retail ground beef.

Feedlot cattle/abattoir cattle/beef

E. coli

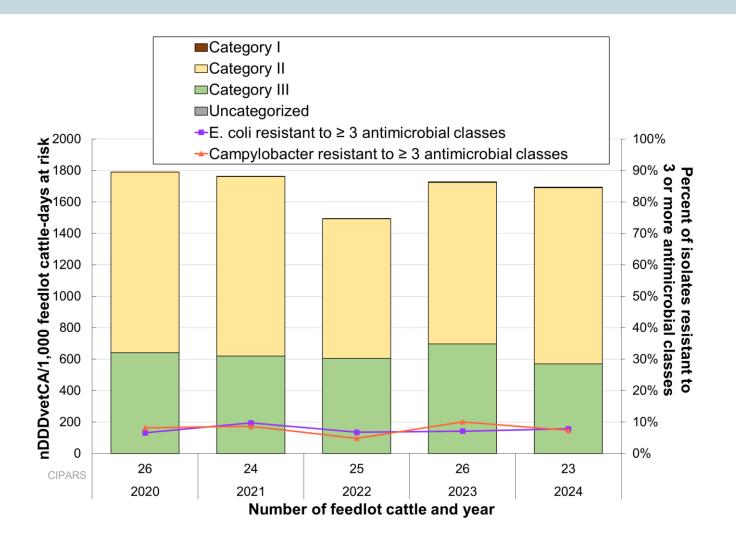
- Abattoir: ranged from moderate to low
- Retail: significant increase in MDR from low to moderate, between 2023 and 2024

Salmonella

• Farm: 10 isolates

Campylobacter

 Abattoir: decrease in MDR from moderate to low (p-value 0.0588)


	Multidrug resistance (MDR)										
Bacteria		Component	2020 (%)	2024 (%)	Percent d	lifference ^a	Five-year trend (vertical 0% to 38%)				
		Farm	7	8	1	%					
Esche	richia coli	Abattoir	11	6	5	%					
		Retail	3	12	9	%					
0.4		Farm	0	0	0	%	=				
Salmo	nella	Retail	Not tested	100	Not ap	plicable					
0		Farm	8	7	1	%					
Campylobacter		Abattoir	14	3	11%						
^a Percent	difference=P	ercent 2024-Per	cent 2020								
Legend	20 or fewer isolates recovered		.ow Moder >1% to 10% >10% t		Very high >50% to 70%	Extremely high >70%	CIPARS				

Overall, reported AMU on feedlots decreased by 6% relative to 2020. Reported Category I use (less than 1% of total use) also decreased. The frequency of MDR was low for *E. coli* and *Campylobacter*.

Feedlot cattle on farm

Reported AMU: nDDDvetCA/1000 feedlot cattle-days at risk									
2020 2024 Percent change ^a									
Total	1792	1693	6% decrease						
Category I	3.1	2.9	8% decrease						
Category II	1148	1120	2% decrease						
Category III	641	570	11% decrease						
Uncategorized	0	0	Not reported						

For dairy cattle, the frequency of ciprofloxacin resistance in *Campylobacter* significantly increased between 2020 and 2024.

Dairy cattle on farma

E. coli

· Ciprofloxacin resistance was low

Salmonella

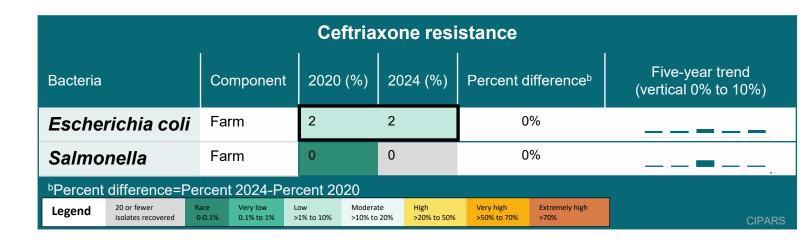
14 isolates

Campylobacter

 Significant increase in resistance to ciprofloxacin from moderate in 2020 to high in 2024

	Ciprofloxacin resistance							
Bacteria	Component	2020 (%)	2024 (%)	Percent d	ifference ^b	Five-year trend (vertical 0% to 26%)		
Escherichia coli	Farm	1	1	0%				
Salmonella	Farm	0	14	10	3%			
Campylobacter	Farm	12	23 11%		1%			
^b Percent difference=Pe	cent 2020							
I eyenn		ow Modera 1% to 10% >10% to	· ·	Very high >50% to 70%	Extremely high >70%	CIPARS		

For dairy cattle, the frequency of ceftriaxone resistance in *E. coli* isolates was low.


Dairy cattle on farma

E. coli

Resistance was low

Salmonella

14 isolates

For dairy cattle, MDR in *E. coli* isolates was low, whereas in *Campylobacter*, it was only observed in 2022 (<1% of isolates).

Dairy cattle on farma

E. coli

MDR was low in 2024

Salmonella

Isolate counts were low (<20) in 2024

<u>Campylobacter</u>

MDR was only observed in 2022 (1% of isolates in 2022)

	Multidrug resistance (MDR)									
Bacteria	Component	2020 (%)	2024 (%)	Percent d	lifference ^b	Five-year trend (vertical 0% to 25%)				
Escherichia coli	Farm	13	10	3%						
Salmonella	Farm	0	7	7	%	_ = =				
Campylobacter	Farm	0 0		0%						
^b Percent difference=Pe	Percent difference=Percent 2024-Percent 2020									
Tepeno		ow Modera 1% to 10% >10% to	· ·	Very high >50% to 70%	Extremely high >70%	CIPARS				

AMU and AMR – human *Salmonella* and *Campylobacter*

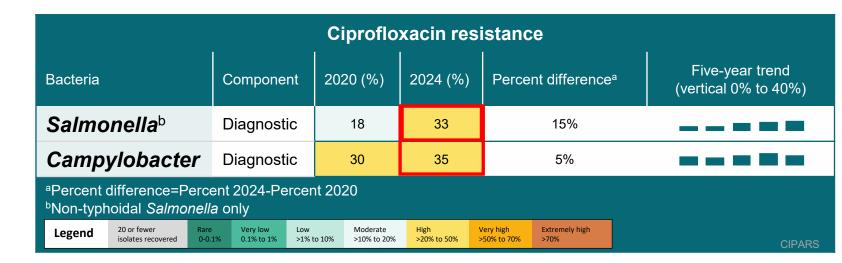
CIPARS and FNC data

• Campylobacter isolates are from FNC sentinel sites

Primary outcome indicators:

- Antimicrobial purchases/dispensations: DDDs/1000 inhabitants per year
- AMR: % of isolates fully susceptible, % not susceptible to ciprofloxacin for Salmonella, % resistant to ciprofloxacin for Campylobacter, % resistant to ceftriaxone, % multidrug-resistant (resistant to 3 or more antimicrobial classes)
 - o 14 antimicrobials in 11 antimicrobial classes for Salmonella
 - o 9 antimicrobials in 7 classes for *Campylobacter*

Ciprofloxacin resistance in human non-typhoidal *Salmonella* isolates continues to increase. Ciprofloxacin resistance in human *Campylobacter* isolates was consistently high.

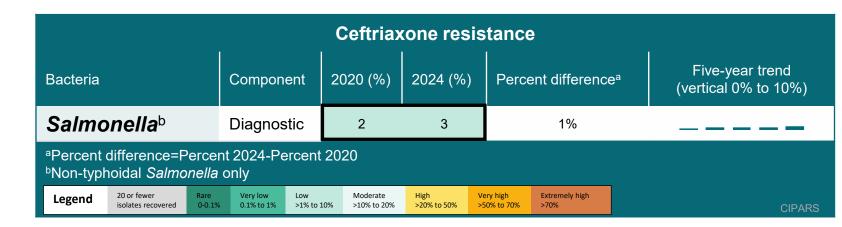

Human

Non-typhoidal Salmonella

 Resistance increased from moderate in 2020 to high in 2024 (33%)

<u>Campylobacter</u>

 Resistance was consistently high with a variable temporal trend

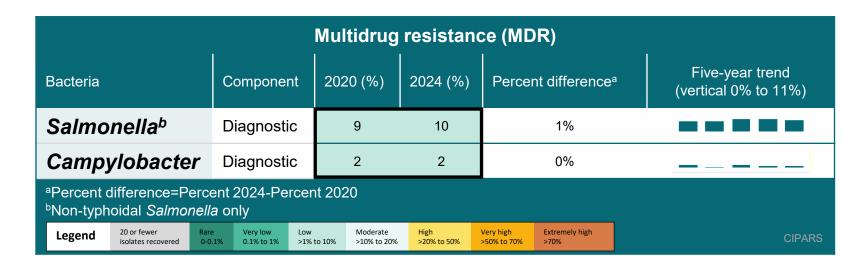


Ceftriaxone resistance in human non-typhoidal *Salmonella* isolates remained low (≤3%).

Human

Non-typhoidal Salmonella

Frequency of ceftriaxone resistance was consistently low

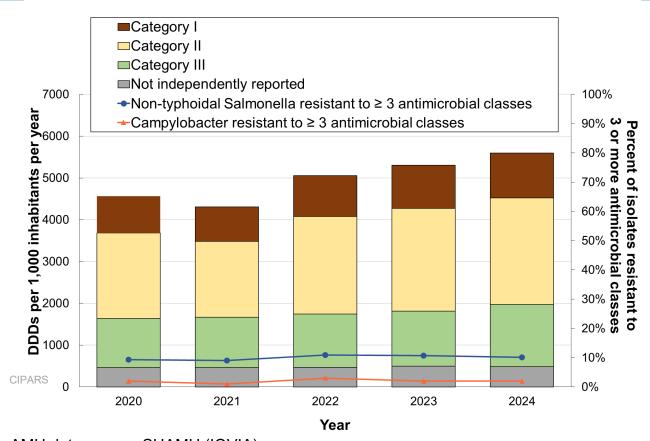


Multidrug resistance in human non-typhoidal Salmonella and Campylobacter isolates remained low.

Human

Non-typhoidal Salmonella and Campylobacter

Frequency of MDR remained low



The quantity of antimicrobials purchased by human hospitals and dispensed by community pharmacies increased overall by 23% to pre-pandemic levels. At the same time, MDR remained low.

Human

Reported AMU: DDDs/1000 inhabitant per year									
2020 2024 Percent change									
Total	4564	5593	23% increase						
Category I	883	1074	22% increase						
Category II	2043	2546	25% increase						
Category III	1173	1488	27% increase						
Not independently reported (NIR) ^b	465	485	4% increase						

Number of isolates										
2020 2021 2022 2023 2024										
Non-typhoidal Salmonella	4839 3777 4483 3843 NINA									
Campylobacter	379	435	322	272	331					

AMU data source: SHAMU (IQVIA)

^bNIR includes: aztreonam, bacitracin, ceftobiprole-medocaril, ceftolozane-tazobactam, chloramphenicol, daptomycin, fosfomycin, fusidic acid, linezolid, metronidazole, nitrofurantoin and vancomycin

^cQuantity of antimicrobials are returning to pre-pandemic levels

^aPercent change=((Value 2024-Value 2020)/Value 2020)X100

Additional surveillance components - AMR

- Retail seafood (*E. coli*)
- Salmonella from the farm environment (from diagnostic animal samples)
- Salmonella from feed ingredients and mixed feeds (Canadian Food Inspection Agency)
- Water (E. coli, Salmonella, Campylobacter)

In retail seafood, the recovery of *E. coli* was rare and only one shrimp isolate in 2024 was resistant to Category I antimicrobials.

Retail seafood

E. coli

- Frequency of recovery was 1.7% across sample types (inclusive of trout, haddock, others)
- In 2023, one isolate from a scallop was resistant to ciprofloxacin
- In 2024, the MDR isolate from shrimp was resistant to 6 classes of antimicrobials, including ciprofloxacin

				ator		
Sample type	Year	Recovery	% Susceptible	%CIP	%CRO	% MDR
Chaire	2023	1% (1/71)	100% (1/1)	0% (0/1)	0% (0/1)	0% (0/1)
Shrimp	2024	3% (4/149)	75% (3/4)	25% (1/4)	0% (0/4)	25% (1/4)
Salmon	2023	1% (1/72)	100% (1/1)	0% (0/1)	0% (0/1)	0% (0/1)
Saimon	2024	1% (1/141)	100% (1/1)	0% (0/1)	0% (0/1)	0% (0/1)
	2023	7% (1/14)	0% (0/1)	100% (1/1)	0% (0/1)	0% (0/1)
Scallop	2024	4% (1/27)	100% (1/1)	0%	0% (0/1)	0% (0/1)

CIPARS

Resistance to ceftriaxone and resistance to 6 or more classes were infrequent yet present in *Salmonella* isolated from the farm environment.

No meropenem or colistin resistance was found

2020-2024	Chicken Farm Environment	Pig Farm Environment	Turkey Farm Environment
Number of isolates (n)	39	9	45
Top 2 Serovars	S. Infantis & S. Enteritidis	Salmonella I 4,[5],12:i:- (all others n=1)	S. Uganda & S. Hadar
Fully susceptible (%)	64%	11%	29%
Ciprofloxacin resistance (%)	0	0	0
Ceftriaxone resistance (%)	0	22% (n = 2; <i>S.</i> Infantis & <i>S.</i> Typhimurium)	2% (n = 1; <i>S.</i> Javiana)
Multidrug resistance (MDR)	8% (n=3, <i>S.</i> Enteritidis, <i>S.</i> Infantis & <i>S.</i> Lexington)	33% (n= 3; <i>S.</i> Derby, <i>S.</i> Infantis, <i>S.</i> Typhimurium)	16% (n = 7; S. Hadar (n = 2))
Maximum resistance (number of classes)	4 classes: 5% (n=2, <i>S.</i> Infantis & <i>S.</i> Lexington	7 classes: 11% (n=1: <i>S.</i> Typhimurium)	6 classes: 2% (n= 1; <i>S.</i> Javiana)

Only three isolates from cattle farm environments were recovered during this time frame

Antimicrobial-resistant isolates were infrequent yet detected in *Salmonella* isolated from feed ingredients and mixed feeds.

In 2024, all Salmonella isolates (n=11) in the CFIA's sampling programs were fully susceptible

- Top two serovars S. Cubana (n=3) and S. Agona (n=2)
- Regions Quebec (n=5), Prairies (n=4), and Ontario (n=2)
- Most were isolated from mixed feeds (n=9)
 - Poultry complete feed for laying hens (n=5)
 - Swine complete feed (n=2)
 - Beef complete feed for adults (n=1)
 - Dairy complete feed with monensin for lactating cows (n=1)
- Between 2018 and 2023, a small number of *Salmonella* isolates were resistant to at least one antimicrobial (n=6)
 - All resistant isolates from mixed feeds were in feed intended for chickens (n=4)

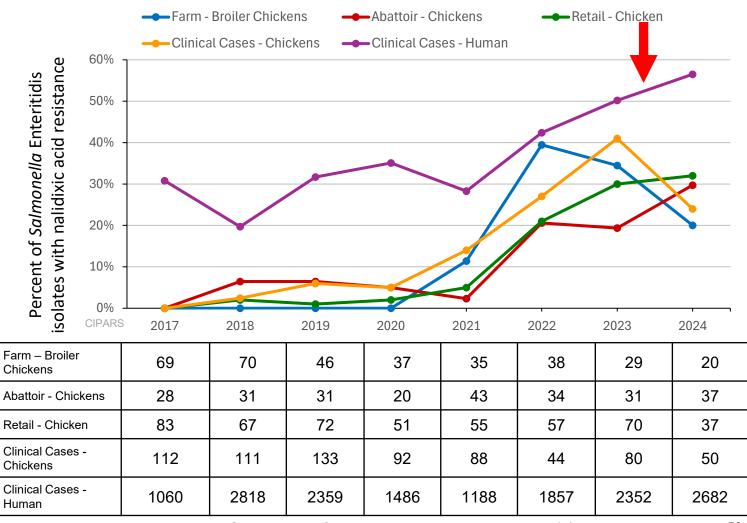
For *E. coli* isolated from untreated/raw water, 9% were resistant to ciprofloxacin.

- Most to all isolates were fully susceptible (E. coli, Salmonella, and Campylobacter)
- 9% of the *E. coli* isolates were resistant to ciprofloxacin in 2024
- No resistance to ceftriaxone was observed in Salmonella or E. coli isolates from 2022-2024
- MDR was found in 5% and 2% of *E. coli* isolates in 2023 and 2024, respectively
- No MDR in Salmonella or Campylobacter isolates from 2022 to 2024

	Fully susceptible										
Bacteria		Component	Component 2022		2023	2024					
Escherichia coli		Raw water	Raw water -		75% (n=60)	85% (n=96)					
Salmon	ella	Raw water	100%	(n=46)	97% (n=38)	95% (n=60)					
Campyl	lobacter	Raw water 79% (n		(n=19)	96% (n=25)	89% (n=35)					
Legend	Legend 20 or fewer isolates recovered		Some >20% to 40%	Many >40% to 60°	Most >60% to 80%	Nearly all >80% to 100% CIPARS					

Resistant to ciprofloxacin										
Bacteria	Component	2022	2023	2024						
Escherichia coli	Raw water	-	3% (n=60)	9% (n=96)						
Salmonella	Raw water	0% (n=46)	0% (n=38)	0% (n=60)						
Campylobacter	Raw water	16% (n=19)	4% (n=25)	0% (n=35)						
l egend		.ow Moderate >1% to 10% >10% to 20%	High Very hig >20% to 50% >50% to	, ,						
				CIPARS						

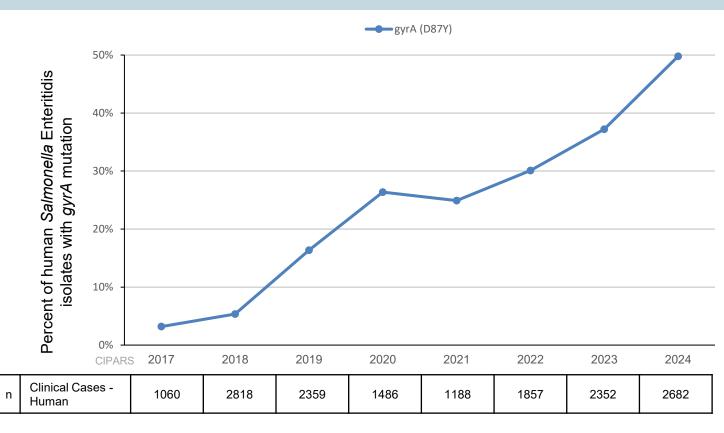
Follow-ups to emerging stories



Nalidixic acid resistance in *Salmonella* Enteritidis (SE) in chickens at abattoir, retail chicken and humans continued to increase.

Broiler chickens, chickens, chicken and humans

- Nalidixic acid-resistance in SE from chickens at abattoir and retail chicken continued to increase
- Nalidixic acid-resistance in SE from broiler chickens on farm and clinical cases in chickens decreased since 2023
- Nalidixic acid resistance in SE from humans substantially increased



There was a rapid emergence of a mutation in *gyrA* (D87Y) in *Salmonella* Enteritidis (SE) from chickens, retail chicken and humans.

Broiler chickens, chickens, chicken and human

- Since 2018, all nalidixic acid-resistant SE isolates from broiler chickens (farm, abattoir and clinical cases) and retail, were sequence type 11 and had a mutation in gyrA (D87Y)
- In humans, SE isolates with a mutation in gyrA (D87Y) substantially increased (figure) and 99.4% of SE isolates with gyrA (D87Y) mutation were sequence type 11
- In humans, Salmonella Infantis isolates with a mutation in gyrA (D87Y) substantially increased – 11% in 2017 to 42% in 2024 (of all S. Infantis)

Year, Surveillance Component, and Isolate Number (n)

Ciprofloxacin resistance in *Campylobacter* substantially increased in feedlot cattle, cattle at abattoir and retail beef.

All surveillance components

Ciprofloxacin resistance in *Campylobacter* isolates from:

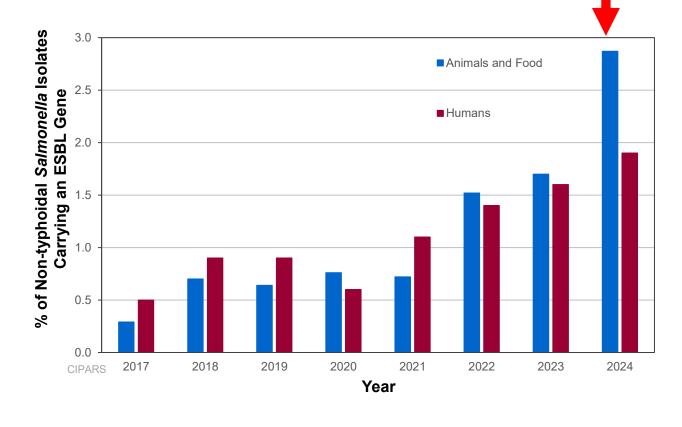
- Feedlot cattle, cattle at abattoir and retail beef continued to substantially increase
- Farm (layer chickens, grower-finisher pigs, turkeys and dairy cattle), abattoir (chickens and pigs) and retail chicken resistance increased since 2020, but variable trends
- Broiler chickens on farm and retail turkey decreased since 2020 and 2023 with variability between
- Humans was variable and high, ranging from 25% to 44% between 2018 and 2024 (data not shown)

Year, Surveillance Component, and Number of Isolates (n)

ESBL-producing non-typhoidal *Salmonella* isolates recovered from humans and animals/food continued to increase, with a sharp increase in animals/food in 2024.

Overall frequency prior to 2017 was < 0.5% for humans and animals/food

• 2024 – humans - 1.9%; animals/food - 2.9%


Humans

Since 2017,

- Frequency of bla_{CTX-M-65} increased (0.3% → 1.1% of all isolates; vast majority are S. Infantis)
- Frequency of bla_{CTX-M-55} increased (0.1% → 0.5% of all isolates; predominantly Salmonella I 4,[5],12:i:-)

Animal/food sources

- Frequency of bla_{CTX-M-65} substantially increased since 2021 (0.1% → 2.45% of all isolates; vast majority S. Infantis)
- Frequency of bla_{CTX-M-55} was variable since 2017 (range 0.1% to 0.5% of all isolates; predominantly Salmonella I 4,[5],12:i:-)

Note: from retail seafood, recovery of ESBL-producing isolates from other Enterobacterales was 6% in 2024

Mobile colistin resistance continued to be detected, though <u>rarely</u> among human and seafood samples.

Humans

- Mobile colistin resistance was detected in 2 Salmonella isolates in 2024
 - 1. mcr 1.1 detected in 1 S. Enteritidis isolate resistant to 2 antimicrobials (ampicillin and colistin) in 2 antimicrobial classes
 - 2. mcr 1.1 detected in 1 Salmonella I 4,[5],12:i:- isolate resistant to 9 antimicrobials (ampicillin, chloramphenicol, ciprofloxacin, colistin, ceftriaxone, gentamicin, sulfisoxazole, trimethoprim sulfamethoxazole and tetracycline) in 8 classes
- 15 isolates with mobile colistin resistance detected between 2017 and 2023

Animal, Food and Water Sources

- Mobile colistin resistance was detected in 4 isolates between 2017 and 2024
 - 1. mcr 3.15 detected in 1 Aeromonas isolate from retail salmon from Canada in 2024 no additional resistance
 - 2. mcr 3.3 detected in 1 Aeromonas isolate from retail **shrimp** from **Vietnam** in 2023 no additional resistance
 - 3. mcr 4.2 detected in 1 S. Mbandaka isolate from a chicken at abattoir in 2019 no additional resistance
 - 4. mcr 1 detected in 1 Salmonella I 4,[5],12:i:- isolate from a horse diagnostic sample in 2017 resistant to 8 antimicrobials (chloramphenicol, ciprofloxacin, colistin, gentamicin, nalidixic acid, sulfisoxazole, trimethoprim-sulfamethoxazole and tetracycline) in 6 classes

No carbapenemase-producing Salmonella detected since 2018.

Carbapenemase-producing organisms

Humans

- blaOXA-48 detected in 1 Salmonella London isolate in 2018
 - Resistant to 2 antimicrobials (ampicillin and meropenem) in 2 antimicrobial classes

Animal and Food Sources

- blaIMP-27 detected in 1 S. Schwarzengrund from a sick pig in 2017
 - Resistant to 9 antimicrobials (amoxicillin-clavulanic acid, ampicillin, chloramphenicol, ceftriaxone, cefoxitin, meropenem, sulfisoxazole, streptomycin and tetracycline) in 8 antimicrobial classes

Interactive Data Displays

CIPARS Interactive data visualizations: One Stop Shop

https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars/interactive-data.html

https://health-infobase.canada.ca/cipars/

Summary and take away messages

Take-away messages

- Relative to 2020, sales of MIAs for animals decreased by ~13%, whereas Category I sales increased by 23% (mg/kg biomass)
- Sales for use in aquaculture increased by 226% relative to 2020, however the increase in 2024 was
 unusual, anecdotal information indicates there was likely a disease outbreak driving this increase.
- Canadian sales of MIAs for animals were slightly higher than the average for the Americas, according to global data in WOAH's ANIMUSE (based on 2022 data)
- New data on antifungals sold as pesticides: total quantity was greater than the total quantity of medically
 important antibiotics sold for humans, animals, and plants/crops combined
- Broiler chickens/chicken: increase in ciprofloxacin resistance in E. coli and Salmonella
- Grower-finisher pigs, increase in reported AMU between 2023 and 2024, with a substantial increase in Category I antimicrobials used
- Humans, the frequency of ciprofloxacin resistance increased in Salmonella
- Retail seafood, resistance to colistin (salmon Aeromonas) and ciprofloxacin (scallop E. coli) was found

Take-away messages

- While infrequent, Salmonella isolates with Category I resistance and MDR were found in the environment of sick animals
- E. coli resistant to ciprofloxacin were found in untreated/raw water samples
- CIPARS continued to detect increasing proportions of nalidixic acid-resistant S. Enteritidis from broiler chickens, chicken meat and humans. This increase appeared to be attributed to the emergence of a mutation in gyrA (D87Y).
- Ciprofloxacin resistance in Campylobacter from feedlot cattle, healthy cattle at abattoir and retail ground beef continued to rise. This trend was variable in other species/stages of the food chain. Overall, ciprofloxacin resistance in Campylobacter from humans remained high with a variable trend (35%, 2024).
- **ESBL-producing non-typhoidal** *Salmonella* from humans, and animals/food continued to increase. The frequency of ESBL-producing *Salmonella* prior to 2017 was less than 0.5% for each of humans and animals/food, in 2024 this stands at 1.9% and 2.9%, respectively.
- Mobile colistin resistance and carbapenemase-producing Salmonella were rarely detected. Mobile
 colistin resistance was detected in two human Salmonella isolates and one retail salmon Aeromonas isolate
 from Canada in 2024. Carbapenemase-producing Salmonella have not been found from either human or
 animal sources since 2018.

Acknowledgements

Human (AMR):

- NML Division of Enteric Diseases and PulseNet Canada
- Provincial Public Health Laboratories
- FoodNet Canada Sentinel Sites (Campylobacter)
- National Enteric Surveillance Program (NESP)

Farm (AMR and AMU):

- Veterinarians, producers and component groups, and academic and federal partners who participate in the farm program
- Saskatchewan Agriculture
- Feedlot Cattle Surveillance partial funding current & past: Canadian Agricultural Partnership in Alberta and Ontario, Alberta Cattle Feeders Association, Bayer Animal Health, Beef Farmers of Ontario, Beef Cattle Research Council, Alberta Beef Producers, McDonald's, Saskatchewan Cattle Feeders and Vetoquinol
- Dairy Cattle Surveillance partial funding: Dairy Farmers of Canada Dairy Research Cluster as part of the Canadian Agricultural Partnership
- Fisheries and Oceans Canada (DFO)

Abattoir:

· Canadian Food Inspection Agency, abattoir operators, samplers and personnel

Retail and Water:

- Health Units and institutions that participate in FoodNet Canada
- · Alberta Irrigation Districts Association
- Alberta Agriculture and Irrigation
- · Participating water treatment plants

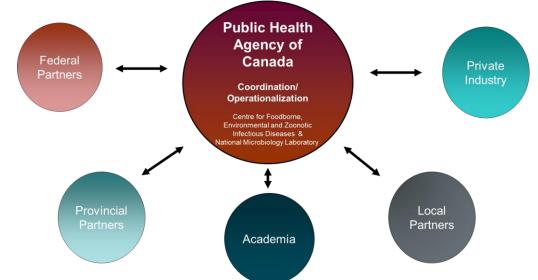
Clinical Animal Isolates:

Provincial Animal Health Laboratories

Antimicrobial sales for animals:

VASR: Health Canada's Veterinary Drugs Directorate and PHAC

Antimicrobial Use - humans:


• SHAMU (PHAC AMR Task Force) and IQVIA. The statements, findings, conclusions, views, and opinions expressed in this report are based in part on data obtained under license from IQVIA Solutions Canada Inc. concerning the following information service(s): Compuscript, from January, 2020 to December, 2024. All Rights Reserved. The statements, findings, conclusions, views, and opinions expressed herein are not necessarily those of IQVIA Inc. or any of its affiliated or subsidiary entities.

Antimicrobials Sold as Pesticides for use in Crops:

Health Canada's Pest Management and Regulatory Agency

Feed Ingredients and Mixed Feeds:

Canadian Food Inspection Agency

Appendix

Antimicrobials are grouped into categories based on their importance to human medicine

Medically important antimicrobials

Category I: Very high importance

Examples: 3rd generation cephalosporins,

fluoroquinolones

Category II: High importance

Example: macrolides

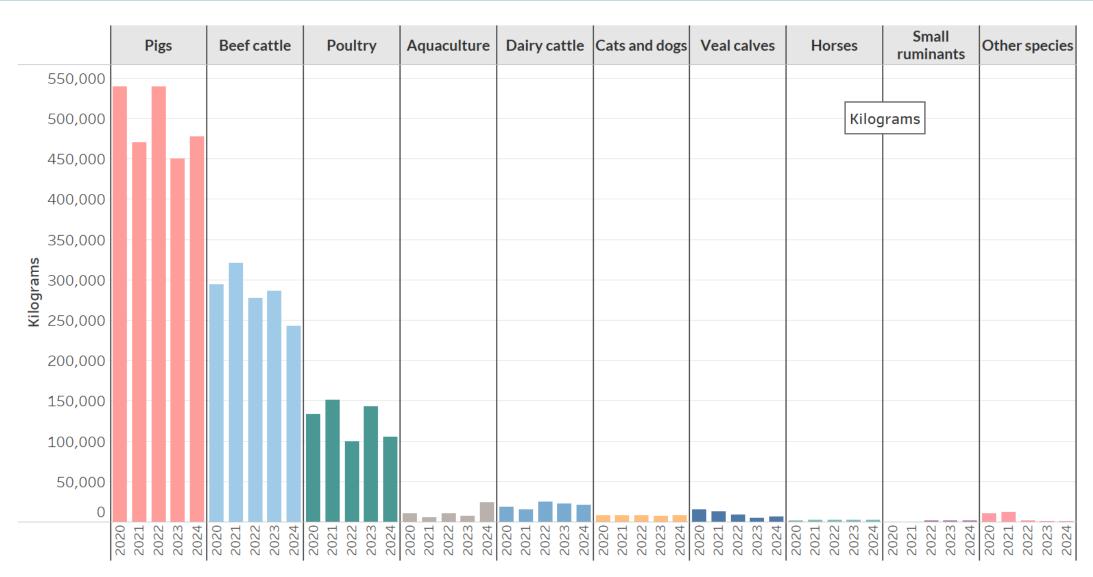
Category III: Medium importance

Examples: tetracyclines, sulfonamides

Category IV: Low importance

Example: ionophores

Chemical coccidiostats are considered out of scope of medically important antimicrobials. Uncategorized medically important antimicrobials include pleuromutilins, orthosomycins, coumarins and pseudomonic acids


Categorization of antimicrobials: https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/categorization-antimicrobial-drugs-based-importance-human-medicine.html

List of certain antimicrobial active pharmaceutical ingredients: https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/veterinary-antimicrobial-sales-reporting/list-a.html

^{*}Categorization system developed by Health Canada's Veterinary Drugs Directorate

For In kg, reported sales were primarily for pigs, beef cattle and poultry

CIPARS

There was a different spectrum of antimicrobials sold for use in animals compared to people.

Groups: human and all animals

Indicators: mg/kg biomass (animal)

mg/population adjusted biomass

(human)

The only medically important antimicrobial class sold for use on crops are aminoglycosides (Source: HC-PMRA)

Data for humans and animals (food animals, horses, cats and dogs) are for systemic use only (oral and parenteral)

		uman				Antimicrobial Class	All Animals					
	2020 0.46	0.46	0.46	2023 0.46	0.48	carbapenems	2020	2021	2022	0.00	2024	
	2.29	2.13	2.30	2.25	2.36	3rd & 4th generations cephalosporins	0.18	0.18	0.19	0.00	0.21	
3	4.63	4.22	4.35	4.13	3.97	fluoroquinolones	0.05	0.08	0.13	0.14	0.16	
	17.26	15.14	17.85	20.11	22.19	penicillin beta-lactamase inhibitor combinations	0.38	0.42	0.43	0.42	0.43	
	14.78	14.19	13.95	14.29	14.63	1st & 2nd generation cephalosporins	0.43	0.47	0.47	0.46	0.48	
	0.07	0.07	0.06	0.06	0.06	aminoglycosides	1.06	1.99	1.15	1.11	1.65	
	2.17	1.95	1.78	1.66	1.49	lincosamides	5.98	7.07	7.06	5.59	5.63	
	2.87	2.18	3.08	3.18	3.67	macrolides	14.93	13.86	14.26	13.91	13.40	
	21.12	19.27	26.51	28.12	28.18	penicillins	13.76	17.12	13.30	11.61	11.74	
	6.08	5.77	5.84	5.92	6.30	sulfonamides	6.92	5.97	6.40	5.88	6.58	
	2.57	2.63	2.60	2.62	2.87	tetracyclines	71.87	69.91	69.57	67.46	63.07	
	6.37	6.45	6.61	7.27	7.74	other	18.59	17.46	17.90	19.34	18.15	

Others for **humans** includes: bacitracins, 5th generation cephalosporins, fosfomycins, fusidic acid, glycopeptides, lipopeptides, monobactams, nitrofurans, nitroimidazoles, oxazolidinones, phenicols, and polymyxins.

Others for **animals** includes: aminocoumarins, aminocyclitols, amphenicols, β-lactamase inhibitors, cyclic polypeptides, fusidic acid, glycopeptides, nitrofurantoins, nitroimidazoles, orthosomycins, phosphonic acid derivatives, pleuromutilins, polymyxins, pseudomonic acids, streptogramins, and therapeutic agents for tuberculosis **Data sources:** SHAMU (IQVIA) and CIPARS

mg adjusted for biomass

AMR indicator: fully susceptible

There was a significant and substantial decrease in fully susceptible *Salmonella* isolates from retail chicken. However, there was a significant increase in fully susceptible *Campylobacter* isolates from chickens at abattoir and on farm and *Salmonella* in chickens on farm.

Broiler chickens/chicken

E. coli

Frequency ranged from 32-48%

<u>Salmonella</u>

- Farm: a significant increase with many isolates fully susceptible
- Retail: significant and substantial decrease. Most isolates were fully susceptible in 2020 and only some were in 2025.

<u>Campylobacter</u>

Farm and abattoir: significant increases between 2020 and 2024

Fully susceptible										
Bacteria		Component	2020 (%)) 2024 (%	b) Pe	rcent differenceª	Five-year trend (vertical 0% to 70%)			
		Farm	38	32		6%				
Escher	richia coli	Abattoir	39	42		3%				
		Retail	45	48		3%				
	Farm	40	59		19%					
Salmor	nella	Abattoir	43	49		6%				
		Retail	70	20		50%				
		Farm	54	65		11%				
Campy	lobacter	Abattoir	38	51		13%				
	Retail	48	48		0%					
^a Percent	difference=Pe	rcent 2024-Pe	rcent 2020							
Legend	20 or fewer isolates recovered			any Mo 40% to 60% >6	ost 0% to 80%	Nearly all >80% to 100%	CIPAR:			

Note: Partial farm sampling in one province impacted the national-level estimates

For turkeys, there was a significant increase in fully susceptible *Campylobacter* farm isolates between 2020 and 2024.

Turkeys/turkey

<u>Campylobacter</u>

 Farm: fully susceptible isolates significantly increased from some to many

	Fully susceptible										
Bacteria		Component	2020 (%)	2024 (%)	Percent difference	e ^a Five-year trend (vertical 0% to 68%)					
Escherichia coli		Farm	33	39	6%						
	Retail	50	55	5%							
		Farm	44	52	8%						
Salmon	iella	Retail	63	68	5%						
		Farm	35	53	18%						
Campylobacter		Retail	63	50	13%						
^a Percent c	difference=Pe	rcent 2024-Per	cent 2020								
Legend 20 or fewer isolates recovered		Few Soi 0%-20% >20			Nearly all >80% to 80%	CIPARS					

For layer chickens, there was a wide range of frequencies of fully susceptible across bacterial species (37% to 83%).

Layer chickens on farm

 None of the changes between 2020/2021 and 2024 were statistically significant for any of the bacterial species

	Fully susceptible											
Bacteria		Component	2020/21 (%)	2024 (%)	Percent differencea	Trend (vertical 0% to 83%)						
Escherichia coli		Farm	72	83	11%							
Salmonella		Farm	59	37	22%							
Campylobacter		Farm	65	55	10%							
^a Percent	difference=Pe	rcent 2024-Per	cent 2020/21									
Legend	20 or fewer isolates recovered	Few So 0%-20% >20	me Many >40% to 609	Most >60% to 80%	Nearly all >80% to 100%	CIPARS						

For layer chickens, 2020 and 2021 were pilot years; hence are combined.

For grower-finisher pigs, there was a significant increase in the frequency of fully susceptible isolates on farm.

Grower-finisher pigs/pork

E. coli

Abattoir: an increasing trend (not sig – p-value = 0.06)

Salmonella

Retail: 4/8 isolates were fully susceptible

<u>Campylobacter</u>

 Farm: significant increase in frequency of fully susceptible

	Fully susceptible										
Bacteria		Component	2020 (%) 2024	(%)	Perce	ent difference ^c	Five-year trend (vertical 0% to 83%)			
Escheric	chia coli	Farm	29	30			1%				
		Abattoir	26	35			9%				
		Retail	55	51		•	4%				
Salmone	ella	Farm	41	41			0%				
		Abattoir	51	52			1%				
		Retail	0	50			50%				
Campylo	obacter	Farm	21	27			6%				
		Abattoir	26	23			3%				
^a Percent di	fference=Pei	rcent 2024-Per	cent 2020								
Legend	20 or fewer isolates recovered			Many >40% to 60%	Most >60%	to 80%	Nearly all >80% to 100%	CIPARS			

There was a significant decrease in fully susceptible *E. coli* isolates from retail beef. The frequency of fully susceptible *Campylobacter* isolates was 2%.

Feedlot cattle/abattoir cattle/beef

E. coli

 Retail: most isolates were fully susceptible, yet there was a significant decrease

Salmonella

Farm: 10 isolates

<u>Campylobacter</u>

• Farm: the frequency of fully susceptible on farm decreased (not significant; *p*-value = 0.06)

	Fully susceptible										
Bacteria		Component	2020 (%)	2024 (%)	Percent difference ^a	Five-year trend (vertical 0% to 85%)					
		Farm	43	41	2%						
Escherichi	ia coli	Abattoir	51	54	3%						
		Retail	83	64	19%						
		Farm	13	20	7%	_====					
Salmonella	a	Retail		0	Not tested	Not tested					
	_	Farm	9	2	7%						
Campylobacter		Abattoir	14	22	8%						
^a Percent differ	ence=Pe	rcent 2024-Per	cent 2020								
Legend 20 or recov	r fewer isolates vered	Few Soil 0%-20% >20			Nearly all to 80% >80% to 100%	CIPARS					

For dairy cattle, the frequency of fully susceptible *E. coli* isolates was >80%.

Dairy cattle on farma

E. coli

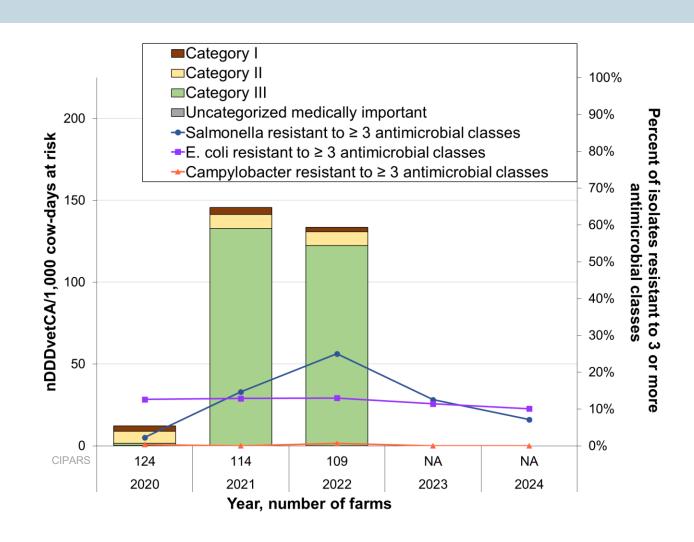
Most isolates were fully susceptible

Salmonella

14 isolates

<u>Campylobacter</u>

 Although many isolates were fully susceptible, there was a decrease between 2020 and 2024 (not significant, p-value = 0.07)


Fully susceptible											
Bacteria	Component	2020 (%)	2024 (%)	Percent difference ^b	Five-year trend (vertical 0% to 84%)						
Escherichia co	li Farm	81	81	0%							
Salmonella	Farm	84	57	27%							
Campylobacte	r Farm	51	43	8%							
^b Percent difference	=Percent 2024-Pe	cent 2020									
Legend 20 or fewer iso recovered		ome Man 20% to 40% >409	y Most >60% to	Nearly all >80% to 100%	CIPARS						

There were no significant changes in MDR.

Dairy cattle on farma

Please join the dairy specific presentation for further explanation of the AMU trends

^aInclusive of calf, heifer, lactating cow, and manure pit samples

bPercent change=((Value 2022-Value 2020)/Value 2020)X100

For Salmonella, caution with interpreting the trend line; 2023 – n=16; 2024 – n=14 isolates

Fully susceptible non-typhoidal *Salmonella* in humans continues to decrease and was less than 50%. Fully susceptible *Campylobacter* in humans was consistently less than 50%.

Human

Non-typhoidal Salmonella

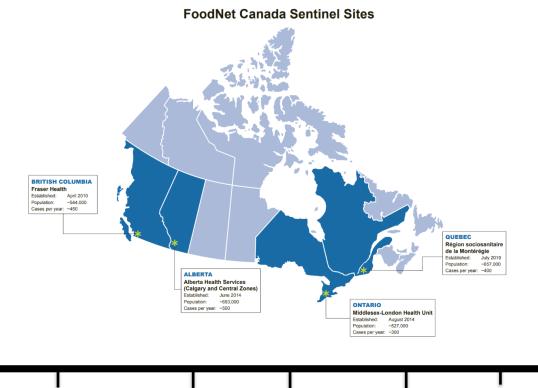
- Frequency of fully susceptible decreased from most isolates in 2020 to many isolates in 2024
- In 2024, the frequency was less than 50%

<u>Campylobacter</u>

 Many isolates were fully susceptible; however, the frequency was consistently less than 50%

	Fully susceptible											
Bacteria		Component	2020 (%)	2024 (%)	Percent differen	Five-year trend (vertical 0% to 72						
Salmonella ^b		Diagnostic	67	49	18%							
Campylobacter		Diagnostic	41	46	5%							
	^a Percent difference=Percent 2024-Percent 2020 ^b Non-typhoidal <i>Salmonella</i> only											
Legend		Few Some 0%-20% >20% to	Many >40% to 6	Most >60% to 80%	Nearly all >80% to 100%	c	IPARS					

FoodNet Canada (FNC) Water sampling



FNC Water sampling objective: to understand pathogen levels and the transmission of enteric

pathogens from water sources.

Overall methods:

- Active water sampling in four sentinel sites
- Types of water sampled depends on the local water system within the site, and have included recreational, surface and irrigation
- The core pathogens tested include: STEC, Salmonella and Campylobacter
- Supports CIPARS attribution activities
- AMR testing for CIPARS

2012
British Columbia
samples
recreational
water

2013 British Columbia starts sampling irrigation water

2014
Alberta starts
sampling
irrigation water

2019
Ontario starts
sampling
surface water
along the
Thames River

2021
Quebec starts
sampling surface
water and British
Columbia
samples
recreational

water*

2022
British
Columbia water
sampling
paused;
wastewater
pilot initiated

2024
British Columbia
water short-term
sampling of
irrigation &
recreational
water

^{*}outside of sentinel site boundaries due to the COVID-19 pandemic